НОВОСТИ   БИБЛИОТЕКА   КАРТА САЙТА   ССЫЛКИ   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Свойства титана

В периодической системе элементов Менделеева титан имеет порядковый номер 22. Его нейтральный атом состоит из ядра, заряд которого равен 22 ед. положительного электричества, и находиться вне ядра 22 электронов.

Итак, ядро нейтрального атома титана содержит 22 протона. Количество же нейтронов, т. е. нейтральных незаряженных частиц, различно: чаще 26, но может колебаться от 24 до 28. Поэтому и число изотопов титана различно. Устойчивых природных изотопов титана всего пять: 46Ti, 47Ti, 48Ti, 49Ti, 50Ti. Это установил в 1936 г. немецкий физик Ф. В. Астон. До его исследований считалось, что титан изотопов вообще не имеет. Природные устойчивые изотопы титана распределяются следующим образом (в отн. %): 46Ti - 7,99; 47Ti - 7,32; 48Ti - 73,97; 49Ti - 5,46; 50Ti - 5,25.

Кроме естественных, титан может иметь и целый ряд искусственных изотопов, получаемых с помощью его радиоактивного облучения. Так, если бомбардировать титан нейтронами или α-частицами, можно получить радиоактивный изотоп титана 52Ti с периодом полураспада - 41,9 мин, который дает β- и γ-излучения. Искусственно получены и другие изотопы титана (42Ti, 43Ti, 44Ti, 45Ti, 51Ti, 52Ti, 53Ti, 54Ti), некоторые из них сильнорадиоактивные, с различными сроками полураспада. Так, у изотопа 44Ti период полураспада всего 0,58 с, а у изотопа 45Ti - 47 лет.

Радиус ядра титана равен 5 фм. Вокруг положительно заряженного ядра титана на четырех орбитах К, L, М, N располагаются электроны: на К - два электрона, на L - восемь, на M - 10, на N - два. С орбит N и М атом титана может свободно отдавать по два электрона. Таким образом, наиболее устойчивый ион титана - четырехвалентный. Пятым электрон с орбиты М "вырвать" невозможно, поэтому титан никогда не бывает больше чем четырехвалентным ионом. В то же время с орбит N и М атом титана может отдавать не четыре, а три, два или один электрон. В этих случаях он становится трех-, двух- или одновалентным ионом

Титан различной валентности имеет неодинаковые ионные радиусы. Так, радиус иона Ti4+ равен 64 пм, иона Ti3+ - 69, Ti2+ - 78, Ti1+ - 95 пм.

Долгое время не могли точно определить атомную массу титана (атомный вес). В 1813 г. Й. Я. Берцелиус получил неправдоподобно завышенную величину - 288,16. В 1823 г. немецкий химик Генрих Розе установил, что атомный вес титана ранен 61,6. В 1829 г. ученый несколько раз уточнял величину: 50,63; 48,27 и 48,13. Ближе к истинным оказались измерения английского химика Т. Э. Торна - 48,09. Однако это значение продержалось до 1928 г., когда исследования химиков Бакстера и Бутлера дали окончательную величину атомного веса - 47,9. Атомная масса природного титана, вычисленная по результатам исследования его изотопов, составляет 47,926. Эта величина практически идентична значению интернациональных таблиц.

В периодической системе элементов Менделеева титан расположен в группе IVB, в которую, кроме него, входит цирконий, гафний, курчатовий. Элементы данной группы в отличие от элементов группы углерода (IVА) обладают металлическими свойствами. У соединений даже самого титана кислотообразующая способность выражена слабее, чем у любого элемента группы углерода. Хотя титан занимает самое верхнее место в своей подгруппе, он является наименее активным металлическим элементом. Так, двуокись титана амфотерна, а двуокиси циркония и гафния обладают слабо выраженными основными свойствами. Титан больше, чем другие элементы подгруппы IVB, близок к элементам подгруппы IVA - кремнию, германию, олову. Четырехвалентный титан отличается от кремния и германия большей склонностью к образованию комплексных соединений различных типов, чем особенно сходен с оловом.

Титан и другие элементы подгруппы IVB очень близки по свойствам к элементам подгруппы IIIB (группы скандия), хотя и отличаются от последних способностью проявлять большую валентность. Титан к скандию даже ближе, чем к элементам подгруппы IVA. Сходство титана со скандием, иттрием, а также с элементами подгруппы VВ - ванадием и ниобием выражается и в том, что в природных минералах титан часто встречается вместо с этими элементами, изоморфно замещая друг друга.

Из кристаллохимии кислородных соединений известно, что характерное координационное число для титана равно 6, а единственным координационным полиэдром, соответствующим этому числу, является октаэдр. Причем ни в одном из кислородных соединений атомы титана не имеют координационного числа больше 6. В такой координации среднее расстояние между титаном и кислородом равно 2 Å. В структурах, для которых характерно статистическое распределение атомов Ti4+ и Nb5+ в октаэдрах, соответствующее среднее расстояние между титаном и ниобием также составляет 2 Å. Из этого следует вывод о близости ионных радиусов титана и ниобия.

Близость ионных радиусов элементов - непременное условие возможности изоморфизма между ними. Для титана наиболее полно этому условию удовлетворяют ниобий, тантал, трехвалентное железо и цирконий.

А теперь рассмотрим, какие же химические соединении с другими элементами может образовывать титан. С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди-, три- и тетрасоединения, с серой и элементами её группы (селеном, теллуром) - моно- и дисульфиды, с кислородом - оксиды, диоксиды и триоксиды. Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами - интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами.

Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных - золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии? А дело в том, что реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту шлепку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею "пассивируется", т. е. защищает сам себя от дальнейшего разрушения.

Известно, что коррозионная стойкость любого металла определяется величиной его электродного потенциала, т. е. разностью электрических потенциалов между металлом и раствором электролита. Отрицательные значения электродного потенциала свидетельствуют об убыли ионов металла с его поверхности и о переходе их в раствор, т. е. о растворимости и коррозии металла. Положительное значение указывает на то, что металл обладает стойкостью в данном растворе, не отдает своих ионов и не корродируется. Так вот, для свежеочищенной поверхности титана измеренные значения электродного потенциала в воде, в водных растворах, во многих кислотах и щелочах колеблются от -0,27 до -0,355 В, т. е. металл, казалось бы, должен быстро растворяться. Однако в большинство водных растворов электродный потенциал титана очень быстро поднимается от отрицательных до положительных значений, примерно до +0,5 В, и коррозия практически моментально прекращается: титан пассивируется и становится в высшей степени коррозионно-стойким.

Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах. Об исключительной его стойкости в атмосфере, в пресной и океанической воде даже при нагревании мы уже говорили. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности к прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана по многих агрессивных средах, в таких, как азотная, соляная, серная, "царская водка" и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.

В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана в азотной кислоте не превышает 0,1-0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1- 2% и более), как реакция заканчивается, и коррозия титана прекращается.

В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С - 0,58 мм/год. При нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С - уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.

В серной кислоте слабой концентрации (до 0,5-1%) титан стоек даже при температуре раствора до 50 - 95° С. Стоек он и в более концентрированных растворах (10- 20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005-0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10-20%-ной) начинает растворяться, причем скорость коррозия достигает 9-10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Её можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в "царской водке": в ней при обычных температурах (10-20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей "царской водке", а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.

Очень слабо корродирует титан в большинство органических кислот (уксусной, молочной, винной), и разбавленных щелочах, и растворах многих хлористых солей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимодействует очень бурно.

В расплаве многих металлов чистый титан обнаруживает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корродирует, и лишь при очень высоких температурах расплавов (выше 300-400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрессивных растворов и расплавов, в которых титан растворяется очень интенсивно. Главный "враг" титана - плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более концентрированных растворах титан "тает", как лед в горячей воде. Фтор - этот "разрушающий всё" (греч.) элемент - бурно реагирует практически со всеми металлами и сжигает их.

Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концентрации, перекиси водорода, сухим хлору и брому, спиртам, в том числе спиртовой настойке йода, расплавленному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители - так называемые ингибиторы, например, в растворы соляной и серной кислот - азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.

В титан можно вводить некоторые металлы, повышающие его стойкость в десятки и сотни раз, например до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20-30% молибдена делает этот сплав настолько устойчивым к любым концентрациям соляной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четырех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десятки раз. Следует отметить, что благородные платиноиды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не уменьшаются.

Каковы же физические свойства титана, сделавшие его лучшим из всех, известных конструкционных металлов?

Титан весьма тугоплавкий металл. Долгое время, считалось, что он плавится при 1800° С, однако в середине 50-х гг. английские ученые Диардорф и Xeйc установили температуру плавления для чистого элементарного титана. Она составила 1668±3°C. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, ренин, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте:

Сравнение титана с другими элементами
Сравнение титана с другими элементами

Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства: низкая плотность, высокая прочность, твердость и др. Главное же, что эти свойства не меняются существенно при высоких температурах.

Титан - легкий металл, его плотность при 0° С составляет всего 4,517 г/см3, а при 100° С - 4,506 г/см3. Титан относится к группе металлов с удельной массой менее 5 г/см3. Сюда входят все щелочные металлы (натрий, калий, литий, рубидий, цезий) с удельной массой 0,9-1,5 г/см3, магний (1,7 г/см3), алюминий (2,7 г/см3) и др. Титан более чем в 1,5 раза тяжелее алюминия, и в этом он, конечно, ему проигрывает, но зато в 1,5 раза легче железа (7,8 г/см3). Однако, занимая по удельной плотности промежуточное положение между алюминием и железом, титан по своим механическим свойствам во много раз превосходит и алюминий и железо.

Каковы же эти свойства, которые позволяют широко использовать титан как конструкционный материал? Прежде всего, прочность металла, т. е. его способность сопротивляться разрушению, а также необратимому изменению формы (пластические деформации). В зависимости от вида напряженного состояния - растяжения, сжатия, изгиба и других условий испытания (температура, время) для характеристики прочности металла используются различные показатели: предел текучести, временное сопротивление, предел усталости и др. По всем этим показателям титан значительно превосходит алюминий, железо и даже многие лучшие марки стали.

Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Другие же металлы либо просто не выдерживают таких температур, либо сильно разупрочняются.

Чистый титан - высокопластичный металл, что обусловлено благоприятным соотношением осей "с" и "а" в его гексагональной решетке и наличием в ней множества систем плоскостей скольжения и двойникования. Хотя и считается, что металлы с гексагональной кристаллической решеткой очень пластичны, титан в силу указанных особенностей его кристаллов стоит в одном ряду с высокопластичными металлами, имеющими иной тип кристаллической решетки. В результате чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

Интересно отметить, что титан долгие годы, вплоть до получения чистого металла, рассматривали как очень хрупкий материал. Связано это было с наличием в титане примесей, особенно азота, кислорода, углерода и др. Даже их небольшое количество влияет, и весьма существенно, на свойства титана, в том числе на его пластичность. То же самое можно сказать и о твердости титана. Она тем выше, чем больше в металле примесей. Так, твердость титана, содержащего тысячные доли процента кислорода, азота, углерода, железа, составляет 400-600 МПа, а при содержания тех же примесей в сотые доли процента твердость его повышается до 900-1000 МПа.

Почему это происходит? Кислород и азот хорошо растворимы в титане, особенно в его низкотемпературной α-модификации. С их внедрением в октаэдрические пустоты кристаллов титана начинается деформация его кристаллической решетки, повышается жесткость межатомных связей и, как следствие, увеличивается твердость, прочность, предел текучести, снижается пластичность металла. Самой вредной примесью является водород: даже незначительные количества его резко снижают пластичность металла и особенно его ударную вязкость. Углерод растворяется в титане в гораздо меньшей степени и мало влияет на понижение пластичности металла. Железо ухудшает механические свойства титана, только если его содержится 0,5% и выше. Другие металлы почти не воздействуют на эти свойства.

Итак, чистый читан - это твердый, прочный, пластичный, достаточно вязкий и упругий металл. Твердость его по шкале Бринеля составляет около 1000 мн/м2. Для сравнения укажем, что железо имеет всего 350-450 мн/м2, медь - 350, магний литой - 294, магний деформированный - 353, а алюминий - всего 170 мн/м2. Модуль нормальной упругости титана 108 тыс. мн/м2, по упругости он лишь немного уступает меди и стали, но является более упругим, чем алюминий и магний.

Титан имеет высокий предел текучести - примерно 250 мн/м2. Это выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и почти в 20 раз, чем у алюминия. Следовательно, титан лучше этих металлов сопротивляется сминающим ударим и другим нагрузкам, способным деформировать титановые детали.

Высота и вязкость титана. Он отлично противостоит воздействию сколовых и сдвиговых ударов и нагрузок. Этой выносливостью объясняется еще одно замечательное свойство титана - исключительная стойкость его в условиях кавитации, т. е. при усиленной "бомбардировке" металла в жидкой среде пузырьками воздуха, которые образуются при быстром движении или вращении металлической детали в жидкой среде. Эти пузырьки воздуха, лопаясь на поверхности металла, вызывают очень сильные микроудары жидкости о поверхность движущегося тела. Они быстро разрушают многие материалы, и металлы в том числе, а вот титан прекрасно противостоит кавитации.

Испытания в морской воде быстровращающихся дисков из титана и других металлов показали, что при вращении в течение двух месяцев титановый диск практически не потерял в массе. Внешние края его, где скорость вращения, а, следовательно, и кавитация максимальны, не изменились. Другие диски не выдержали испытания: у всех внешние края оказались поврежденными, а многие из них вовсе разрушились.

Титан обладает еще одним удивительным свойством - "памятью". В сплаве с некоторыми металлами (например, с никелем) он "запоминает" форму изделия, которую из него сделали при определенной температуре. Если такое изделие потом деформировать, например, свернуть в пружину, изогнуть, то оно останется в таком положении на долгое время. После нагревания до той температуры, при которой это изделие было сделано, оно принимает первоначальную форму. Это свойство титана широко используется в космической технике (на корабле разворачиваются вынесенные в космическое пространство большие антенны, до этого компактно сложенные). Недавно это свойство титана стали использовать медики для бескровных операции на сосудах: в больной, суженный сосуд вводится проволочка из титанового сплава, а потом она, разогреваясь до температуры тела, скручивается в первоначальную пружинку и расширяет сосуд.

Заслуживают внимания температурные, электрические и магнитные свойства титана. Он обладает сравнительно низкой теплопроводностью, всего 22,07 Вт/(м•К), что приблизительно в 3 раза ниже теплопроводности железа, в 7 раз - магния, в 17-20 раз - алюминия и меда. Соответственно и коэффициент линейного термического расширения у титана ниже, чем у других конструкционных металлов: при комнатной температуре (20° С) у титана он равен 8,5•10-6/°С, у железа - 11,7•10-6/°С, у меди- 17•10-6/°С, у алюминия - 23,9/°С. Сравнительно невелика и электропроводность титана. Объясняется, это свойство довольно высоким электрическим сопротивлением титана: при комнатной температуре оно составляет 42,1•10-6 Ом•см. С повышением температуры электросопротивление титана еще больше увеличивается, а с понижением ее резко надает, вблизи абсолютного нуля титан становится сверхпроводимым.

Титан - типичный парамагнетик, его магнитная восприимчивость при 20° С всего 3,2±0,4•10-6 ед. Как известно, парамагнитными являются алюминий и магний, а вот медь диамагнитна, железо - ферромагнетик.

Мы рассмотрели химические и физические свойства титана, которые в целом благоприятствуют широкому использованию этого металла. Однако у титана есть немало и отрицательных качеств. Например, он может самовозгораться, а в некоторых случаях даже и взрываться.

Уже говорилось, что в концентрированной азотной кислоте титан исключительно стоек, а вот в красной дымящей, пересыщенной окислами азота, защитная пленка диоксида титана на поверхности металла моментально разрушается и чистый титан начинает реагировать с кислотой со взрывом. Такая реакция была причиной взрыва титановых топливных баков одной из американских космических ракет. Со взрывом реагирует титан и с сухим хлором. Есть способ предотвратить эти взрывные реакции. Стоит добавить в дымящую красную азотную кислоту всего 1-2% воды, а в сухой хлор и того меньше - 0,5-1%, и на поверхности металла тут же появится защитная пленка. Дальнейшее окисление титана предотвратится и взрыва не произойдет.

В виде тонкой стружки, опилок или порошка титан может самовозгораться даже без подвода тепла извне. Такие случаи наблюдались при его испытаниях на разрыв в атмосфере кислорода в момент разрыва. Это объясняется опять-таки высокой активностью свежей, неокисленной поверхности титана и сильной экзотермичностью реакции его взаимодействии с кислородом.

Титан может гореть не только в атмосфере кислорода, но даже в атмосфере азота, являющегося также сильным окислителем титана. Поэтому гасить горящий титан азотом, как и водой, углекислым газом, нельзя: они разлагаются, выделяя кислород, который затем взаимодействует с раскаленным титаном и дает взрыв.

Еще одним недостатком титана является его способность сохранять высокие физико-механические свойства лишь до температуры 400-450° С, а с добавками некоторых легирующих металлов - до 600° С, и здесь у него есть серьезные конкуренты - жаропрочные спецстали. Однако в минусовом диапазоне температур титану равных нет. Железо становится хрупким уже при температуре -40° С, специальные низкотемпературные стали - ниже -100° С. А вот титан и его сплавы не разрушаются при температурах до -253° С (в жидком водороде) и даже до -260° С (в жидком гелии). Это очень важное свойство титана открывает ему большие перспективы для использования в криогенной технике и для работы в космическом пространстве.

Титан реагирует со многими металлами. При трении с деталями из более мягкого металла титан может срывать с них металлические частицы и прилеплять к себе металл, а из более твердого, наоборот, частицы титана будут срываться с титановой детали и покрывать другую деталь. Причем никакая жировая или масляная смазка не помогает исключить взаимоналипание частиц. В течение небольшого времени это явление можно ослабить, лишь применив в качестве смазки чешуйчатые молибденит или графит. А вот сваривается титан с другими металлами очень плохо. Практически полностью эта проблема пока не решена, хотя сварка титановых изделий проходит отлично.

Титан - твердый металл, как мы уже знаем, тверже железа, алюминия, меди. Но все же не тверже специальных, особотвёрдых инструментальных сталей, из которых делают острые инструменты, ножи, скальпели. Здесь титан неприменим.

Титан - плохой проводник электричества и тепла. Проводов из него не сделаешь, а вот то, что он один из очень немногих металлов является при низких температурах сверхпроводником электричества, открывает ему большие перспективы в электрической технике передачи энергии на большие расстояния.

Титан - парамагнитный металл: он не намагничивается, как железо, в магнитном поле, но и не выталкивается из него, как медь. Его магнитная восприимчивость очень слаба, это свойства можно использовать при строительстве, например, немагнитных кораблей, приборов, аппаратов.

Итак, титан имеет больше достоинств, чем недостатков, и то, что он по иным характеристикам уступает некоторым специальным сталям и сплавам, компенсируется одним важнейшим обстоятельством. Легкость, прочность, пластичность, твердость, стойкость и многие другие качества соединены в одном металле так органично, что это сулит титану большое будущее.

Прежде чем рассказать, как используются титан, его сплавы и соединения сегодня и какие перспективы открываются перед этим металлом в недалеком завтра, рассмотрим подробно, как распространен этот удивительный металл в нашей Вселенной, на планете Земля, в каком виде встречается в породах земной коры, какие месторождения образует, как добываются, обогащаются руды, перерабатываются концентраты. Проследим долгий и нелегкий путь получения чистого титана, его обработки и использования человеком.

предыдущая главасодержаниеследующая глава

Гидрораспределитель золотниковый ВММ6.44 тут.








© METALLURGU.RU, 2010-2020
При использовании материалов сайта активная ссылка обязательна:
http://metallurgu.ru/ 'Библиотека по металлургии'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь