|
Сплавы титанаПолученные в промышленных условиях слитки титана называют техническим титаном. Он имеет практически все те свойства, которыми обладает химически чистый титан. Технический титан в отличие от химически чистого содержит повышенное количество некоторых элементов-примесей. В разных странах в зависимости от технологических особенностей процесса технический титан содержит примеси (в %): железа 0,15-0,3; углерода 0,05-0,1; водорода 0,006-0,013; азота 0,04-0,07; кислорода 0,1-0,4. Наилучшие качественные показатели по содержанию вышеперечисленных примесей имеет технический титан, выпускаемый в СССР. В целом эти примеси практически не ухудшают физические, механические, технологические свойства технического титана по сравнению с химически чистым металлом. Технический титан - это металл серебристо-серого цвета с едва заметным светло-золотистым оттенком. Он легок, почти в 2 раза легче железа, но все же тяжелее алюминия: 1 см3 титана весит 4,5 г, железа 7,8 г, а алюминия 2,7 г. Плавится технический титан почти при 1700° С, сталь - при 1500° С, алюминий - при 600° С. Он в 1,5 раза прочнее стали и в несколько раз прочнее алюминия, очень пластичный: технический титан легко прокатывать в листы и даже в очень тонкую фольгу, толщиной в доли миллиметра, его можно вытягивать в прутки, проволоку, делать из него ленты, грубы. Технический титан обладает высокой вязкостью, т. е. хорошо противостоит воздействию ударов и поддается ковке, при этом он имеет высокую упругость и отличную выносливость. У технического титана довольно высокий предел текучести, он сопротивляется любым усилиям и нагрузкам, стремящимся смять, изменить форму и размеры изготовленной детали. Это его свойство выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и в 18 раз, чем у алюминия. У титана гораздо более высокая твердость, чем у алюминия, магния, меди, железа и некоторых сортов стали, однако ниже, чем у инструментальных сталей. Технический титан - металл очень большой коррозионной стойкости. Он практически не изменяется и не разрушается на воздухе, в воде, исключительно стоек при обычной температуре во многих кислотах, даже в "царской водке", во многих агрессивных средах. У титана имеется еще множество уникальных качеств. Например, стойкость к кавитации, слабые магнитные свойства, низкие электропроводность и теплопроводность и т. н. Но есть у титана и недостатки. Главный - его большая дороговизна, он в 3 раза дороже стали, в 3-5 раза дороже алюминия. Титан не универсальный коррозионно-стойкий конструкционный материал, у него несколько более низкие по сравнению с лучшими сортами легированных сталей значения модулей упругости и ползучести, он может разупрочняться при высоких температурах, склонен к абразивному износу, плохо работает на резьбовых соединениях. Все эти недостатки снижают эффективность применения технического титана в чистом виде, что в общем-то характерно и для других конструкционных металлов; железа, алюминия, магния. Многие, почти все, недостатки чистого титана устраняются при легировании его различными металлами и создании сплавов на его основе. В качестве наилучших конструкционных и коррозионно-стойких материалов сплавы титана имеют огромное преимущество. Титан, будучи весьма химически активным металлом, имеет благоприятные металлохимические свойства для образования прочных соединений - типа непрерывных и ограниченных твердых растворов, ковалентных и ионных соединений. Титан, как известно, относится к металлам переходных групп. Он расположен в IVA группе периодической системы элементов. Непосредственными его аналогами по группе являются цирконий и гафний. Они имеют по два электрона (2S) на последнем электронном уровне и по два электрона (2d) на предпоследнем уровне, не полностью (до 10d) заполненном электронами. Поэтому валентность может меняться от 1 до 4, наиболее устойчивые соединения четырехвалентны. По своим металлохимическим свойствам металлы IVA группы очень близки между собой, поэтому они и могут образовывать твердые растворы Ti-Zr-Hf в широком диапазоне содержаний. Они сходны с металлами соседних групп: VA (ванадий, ниобий, тантал) и IVA (хром, молибден, вольфрам). С ними титан образует широкие области твердых растворов. Все эти восемь металлов дают непрерывные твердые растворы с α- и β-титаном (цирконий, гафний) и с β-титаном (ванадий, ниобий, тантал, хром, плутоний, индий), играя важную роль в образовании титановых сплавов и сплавов на основе этих металлов с титаном. К этой же группе элементов относятся скандий и уран. В целом насчитывается более 50 элементов, дающих с титаном твердые растворы, на основе которых можно производить титановые сплавы и их соединения. Сплавы титана с алюминием. Они наиболее важны в техническом и промышленном отношении. Внедрение алюминия в технический титан даже в небольших количествах (до 13%) позволяет резко повышать жаропрочность сплава при снижении его плотности и стоимости. Этот сплав - отличный конструкционный материал. Добавка 3-8% алюминия повышает температуру превращения α-титана в β-титан. Алюминий является практически единственным легирующим стабилизатором α-титана, увеличивающим его прочность при постоянстве свойств пластичности и вязкости титанового сплава и повышении его жаропрочности, сопротивления ползучести и модуля упругости. Этим устраняется существенный недостаток титана. Помимо улучшения механических свойств сплавов при различных температурах, увеличивается их коррозионная стойкость и взрывоопасность при работе деталей из титановых сплавов в азотной кислоте. Алюминий-титановые сплавы выпускаются нескольких марок и содержат 3-8% алюминия, 0,4-0,9% хрома, 0,25-0,6% железа, 0,25-0,6% кремния, 0,01% бора. Все они коррозионно-стойкие, высокопрочные и жаропрочные сплавы на основе титана. С увеличением содержания алюминия в сплавах температура их плавления несколько снижается, однако механические свойства значительно улучшаются и температура разупрочнения повышается. Эти сплавы сохраняют высокую прочность до 600° С. Сплавы титана с железом. Своеобразным сплавом является соединение титана с железом, так называемый ферротитан, представляющий собой твердый раствор TiFe2 в α-железе. Ферротитан облагораживающе действует на сталь, так как он, активно поглощая кислород, является одним из лучших раскислителей стали. Ферротитан так же активно поглощает из расплавленной стали азот, образуя нитрид титана, другие примеси, способствует равномерному распределению прочих примесей и образованию мелкозернистых структур стали. Кроме ферротитана, на основе железа и титана производятся и другие сплавы, широко используемые в черной металлургии. Феррокарботитан - железотитановый сплав, содержащий 7-9% углерода, 74-75% железа, 15-17% титана. Ферросиликотитан - сплав, состоящий из железа (около 50%), титана (30%) и кремния (20%). Оба эти сплава также применяются для раскисления сталей. Сплавы титана с медью. Даже небольшие присадки меди к титану и другим его сплавам повышают их стабильность в процессе эксплуатации, увеличивается и их жаропрочность. Кроме того, 5-12% титана добавляют в медь для получения так называемою купротитана: им пользуются, чтобы очистить, расплавленную медь и бронзу от кислорода и азота. Легирование меди титаном производится только очень небольшими его добавками, уже при 5% титана медь становится нековкой. Сплавы титана с марганцем. Марганец, введенный в технический титан или в его сплавы, делает их прочнее, они сохраняют пластичность и легко обрабатываются при прокатке. Марганец - недорогой и недефицитный металл, поэтому он широко применяется (до 1,5%) при легировании титановых сплавов, предназначенных для листовой прокатки. Богатый марганцем (70%) сплав называется мангантитаном. Оба металла являются энергетическими раскислителями. Этот сплав, как и купротитан, хорошо очищает от кислорода, азота и других примесей медь и бронзу при отливках. Сплавы титана с молибденом, хромом и другими металлами. Основная цель добавки этих металлов - повысить прочность и жаропрочность титана и его сплавов при сохранении высокой пластичности. Оба металла легируют их в комбинации: молибден предотвращает нестабильность титан-хромовых сплавов, делающихся хрупкими при высоких температурах. Сплавы титана с молибденом по стойкости против коррозии в кипящих неорганических кислотах превосходят техническим титан в 1000 раз. Для повышения коррозиестойкости в титан добавляют некоторые тугоплавкие редкие и благородные металлы: тантал, ниобий, палладий. Значительное количество весьма ценных в научно-техническом отношении композиционных материалов можно производить на основе карбида титана. Это главным образом жаростойкие изделия из металлокерамики, в основе которых лежит карбид титана. В них совмещается твердость, тугоплавкость и химическая стойкость карбида титана с пластичностью и сопротивлением тепловому удару цементирующих металлов - никеля и кобальта. В них можно вводить ниобий, тантал, молибден и тем самым еще больше повышать стойкость и жаропрочность этих композиций на основе карбида титана. Сейчас известно более 30 различных сплавов титана с другими металлами, удовлетворяющих практически любым техническим требованиям. Это пластичные сплавы с низкой прочностью (300-800 МПа) и рабочей температурой 100-200° С, со средней прочностью (600-000 МПа) и рабочей температурой 200-300° С, конструкционные сплавы с повышенной прочностью (800-1100 МПа) и рабочей температурой 300-450° С, высокопрочные (100-1400 МПа) термомеханически обрабатываемые сплавы с нестабильной структурой и рабочей температурой 300-400° С, высокопрочные (1000- 1300 МПа) коррозионно-стойкие и жаропрочные сплавы с рабочей температурой 600-700° С, особо коррозионно-стойкие сплавы со средней прочностью (400-900 МПа) и рабочей температурой 300-500° С. Технический титан и его сплавы выпускаются в виде листов, плит, полос, лент, фольги, прутков, проволоки, труб, поковок и штамповок. Эти полуфабрикаты являются исходным материалом для изготовления из титана и его сплавов различных изделий. Для этого полуфабрикаты надо обработать ковкой, штамповкой, фасонным литьем, резанием, сваркой и т. п. Как же ведут себя этот прочный, стойкий метал и его сплавы в обрабатывающих процессах? Многие полуфабрикаты используются непосредственно, например, трубы и листы. Все они проходит предварительную термическую обработку. Затем для очистки поверхности подвергаются обработке гидропескоструйной или корундовым песком. Листовые изделия еще травят и шлифуют. Так были подготовлены титановые листы для монумента покорителям космоса на ВДНХ и для памятника Ю. А. Гагарину на площади его имени в Москве. Монументы из листового титана будут стоять вечно. Слитки титана и его сплавов могут подвергаться ковке и штамповке, но только в горячем состоянии. Поверхности слитков, печей и штампов должны быть тщательно очищены от примесей, так как титан и его сплавы могут быстро с ними прореагировать и загрязниться. Рекомендуется даже перед ковкой и штамповкой покрывать заготовки специальной эмалью. Нагрев не должен превышать температур полного полиморфного превращения. Ковка производится по специальной технологии - сначала слабыми, а потом более сильными и частыми ударами. Дефекты неправильно проведенной горячей деформации, приведшие к нарушению структуры и свойств полуфабрикатов последующей обработкой, в том числе и термической, исправить нельзя. Листовой штамповке в холодном виде может подвергаться только технический титан и его сплав с алюминием и марганцем. Все остальные листовые титановые сплавы, как менее пластичные, требуют нагрева опять же с соблюдением строгого контроля температур, очистки поверхности от "охрупченного" слоя. Резка и рубка листов толщиной до 3 мм могут производиться в холодном состоянии, свыше 3 мм - при нагреве по специальным режимам. Титан и его сплавы обладают высокой чувствительностью к надрезу и поверхностным дефектам, что требует специальных зачисток кромок в местах, подвергающихся деформации. Обычно в связи с этим предусматриваются припуски на размеры вырубаемых заготовок деталей и пробиваемых отверстий. Резание, токарная, фрезерная и другие виды обработки деталей из титана и его сплавов затрудняются их низкими антифрикционными свойствами, вызывающими налипание металла на рабочие поверхности инструмента. С чем это связано? Между титановой стружкой и инструментом имеется очень небольшая контактная поверхность, в этой зоне возникают большие удельные давления и температуры. Отвод тепла из этой зоны затруднителен, так как титан обладает низкой теплопроводностью и может как бы "растворять" в себе металл инструмента. В результате титан налипает на инструмент, и он быстро изнашивается. Приваривание и налипание титана на контактируемые поверхности режущего инструмента приводят к изменению геометрических параметров инструмента. При механической обработке титановых изделий для уменьшения налипания и задирания титана, отвода тепла применяют сильно охлажденные жидкости. Для фрезерования они должны быть очень вязкими. Пользуются резцами из сверхтвердых сплавов, обработку ведут на очень небольших скоростях. В целом механическая обработка титана во много раз более трудоемкая операция, чем обработки стальных изделий. Сверление отверстий в титановых изделиях тоже является сложной проблемой, связанной в основном с отводом стружки. Налипая на рабочие поверхности сверла, она скапливается в отводящих канавках его, пакетируется. Вновь образующаяся стружка движется уже по прилипшей. Все это снижает скорость сверления и повышает износ сверла. Целый ряд титановых изделий изготавливать методами ковки и штамповки нецелесообразно из-за технологических трудностей производства и большого количества отходов. Многие детали сложной формы гораздо выгоднее изготавливать фасонным литьем. Это весьма перспективное направление в производстве изделий из титана и его сплавов. Но на пути его развития есть ряд осложнений: расплавленный титан реагирует и с атмосферными газами, и практически со всеми известными огнеупорами, и с формовочными материалами. В связи с этим плавка титана и его сплавов производится в вакууме, а формовочный материал должен быть химически нейтральным по отношению к расплаву. Обычно формы, в которые он отливается, - это графитовые кокили, реже керамические и металлические. Несмотря на трудности этой технологии, фасонные отливки сложных деталей из титана и его сплавов получаются при строгом соблюдении технологии очень качественными. Ведь расплавы титана и его сплавов обладают отличными литейными свойствами: у них высокая жидкотекучесть, сравнительно небольшая (всего 2-3%) линейная усадка при затвердевании, они даже в условиях затрудненной усадки не дают горячих трещин, не образуют рассеянную пористость. Литье в вакууме имеет массу преимуществ: во-первых, исключается образование окисных пленок, шлаковых включений, газовой пористости; во-вторых, повышается жидкотекучесть расплава, что влияет на заполнение всех полостей литейной формы. Кроме того, на жидкотекучесть и полноценную заполняемость полостей литейных форм существенно влияют, например, центробежные силы. Поэтому, как правило, фасонные отливки из титана производятся центробежной заливкой. Еще одним чрезвычайно перспективным методом изготовления деталей и изделий из титана является порошковая металлургия. Сначала получают очень мелкозернистый, скорее даже тонкодисперсный, порошок титана. Затем он спрессовывается в холодном виде в металлических пресс-формах. Далее при температурах 900-1000° С, а для высокоплотных конструкционных изделий при 1200-1300° С пресс-изделия спекаются. Разработаны и методы горячего прессования при температурах, близких к температуре спекания, которые позволяют повысить конечную плотность изделий и снизить трудоемкость процесса их изготовления. Разновидностью динамического горячего прессования является горячая штамповка и выдавливание (экструзия) из порошков титана. Главное преимущество порошкового метода изготовления деталей и изделий - почти безотходное производство. Если по обычной технологии (слиток-полуфабрикат-изделие) выход годного составляет всего 25-30%, то при порошковой металлургии коэффициент использования металла повышается в несколько раз, снижается трудоемкость изготовления изделий, уменьшаются трудозатраты на механическую обработку. Методами порошковой металлургии можно организовать производство из титана новых изделий, изготовление которых традиционными методами невозможно: пористые фильтрующие элементы, газопоглотители, металлополимерные покрытия и т. п. К сожалению, порошковый метод имеет существенные недостатки. Прежде всего он взрыво- и пожароопасен, поэтому требует принятия целого комплексе мер для предотвращения опасных явлений. Данным методом можно получать изделия только сравнительно простой формы и конфигурации: кольца, цилиндры, крышки, диски, планки, крестовины и: т. п. Но в целом порошковая металлургия титана имеет будущее, так как экономит большое количество металла, снижает себестоимость изготовления деталей, повышает производительность труда. Еще один важнейший аспект рассматриваемой проблемы - соединение титана. Как соединить титановые изделия (листы, лепты, детали и др.) между собой и с другими изделиями? Мы знаем три основных метода соединения металлов - это сварка, пайка и клепка их. Как же ведет себя титан во всех этих операциях? Вспомним, что титан обладает, особенно при повышенных температурах, высокой химической активностью. При взаимодействии с кислородом, азотом, водородом воздуха зона расплавленного металла насыщается этими газами, изменяется микроструктура металла в месте разогрева, может происходить загрязнение посторонними примесями, и сварной шов будет хрупким, пористым, непрочным. Поэтому обычные методы сварки титановых изделий неприемлемы. Сварка титана требует постоянного и неукоснительного предохранения сварного шва от загрязнения примесями и газами воздуха. Технология сварки титановых изделий предусматривает ее проведение с большой скоростью только в атмосфере инертных газов с применением специальных бескислородных флюсов. Наиболее качественная сварка производится в специальных обитаемых или необитаемых камерах, зачастую автоматическими методами. Необходим постоянный контроль состава газа, флюсов, температуры, скорости сварки, а также качества шва визуальным, рентгеновским и другими методами. Сварной титановый шов хорошего качества должен иметь золотистый оттенок без всякой побежалости. Особо крупные изделия сваривают в специальных герметично закрытых помещениях, заполненных инертным газом. Работу производит сварщик высокой квалификации, он работает в скафандре с индивидуальной системой жизнеобеспечения. Небольшие титановые изделия можно соединять методами пайки. Здесь возникают те же проблемы предохранения разогретых свариваемых частей от загрязнения газами воздуха и примесями, делающими пайку ненадежной. Кроме того, обычные припои (олово, медь и другие металлы) не пригодны. Используются только серебро и алюминий высокой степени чистоты. Соединения титановых изделий с помощью клепки или болтов тоже имеют свои особенности. Титановая клепка очень трудоемкий процесс; на нее приходится тратить вдвое больше времени, чем на алюминиевую. Резьбовое соединение титановых изделий ненадежно, так как титановые гайки и болты при завинчивании начинают налипать и задираться, и оно может не выдержать больших напряжений. Поэтому болты и гайки из титана обязательно покрывают тонким слоем серебра или синтетической пленкой из тефлона, а уж потом используют для завинчивания. Свойство титана к налипанию и задиранию, обусловленное высоким коэффициентом трения, не позволяет применять его без специальной предварительной обработки в трущихся изделиях; при скольжении по любому металлу титан, налипая на трущуюся деталь, быстро изнашивается, деталь буквально вязнет в липком титане. Для устранения этого явления приходится специальными методами упрочнять поверхностный слой титана в изделиях, работающих на скольжение. Производится азотирование или оксидирование титановых изделий: их при высоких температурах (850-950° С) выдерживают в течение определенного времени в атмосфере чистого азота или кислорода. В результате на поверхности образуется тонкая нитридная или окисная пленка высокой микротвердости. Такая обработка приближает износостойкость титана к специальным поверхностно обработанным сталям и позволяет применять его в трущихся и скользящих изделиях. Услуги - ПроектРесурс сюда. |
|
|
© METALLURGU.RU, 2010-2020
При использовании материалов сайта активная ссылка обязательна: http://metallurgu.ru/ 'Библиотека по металлургии' |