НОВОСТИ   БИБЛИОТЕКА   КАРТА САЙТА   ССЫЛКИ   О ПРОЕКТЕ  






предыдущая главасодержаниеследующая глава

Любопытные факты

Любопытные факты
Любопытные факты

Словно сговорившись

В 1886 году американец Чарльз Мартин Холл и француз Поль Луи Туссен Эру почти одновременно и независимо друг от друга разработали промышленный способ производства алюминия электролизом криолито-глиноземных расплавов. История науки и техники знает немало примеров, когда двум ученым в один и тот же год удавалось прийти к одинаковым выводам или открытиям. Поэтому данное совпадение не было бы примечательным, если бы оно не "усугублялось" тем, что и Холл и Эру родились в 1863 году, а скончались оба изобретателя, словно сговорившись, в 1914 году.

Богатства Нептуна

"Голубые кладовые" океанов и морей хранят практически неисчерпаемые запасы многих химических элементов. Так, в одном кубическом метре воды Мирового океана содержится в среднем около четырех килограммов магния. Всего же в водах нашей планеты растворено свыше 6·1016 тонн этого элемента.

Чтобы показать, сколь грандиозна эта величина, приведем следующий пример. С начала нового летоисчисления человечество прожило лишь немногим более 60 миллиардов (т. е. 6·1010) секунд. Это значит, что если бы с первых же дней нашей эры люди начали добывать магний из морской воды, то для того, чтобы к настоящему времени исчерпать все водные запасы этого элемента, пришлось бы каждую секунду извлекать по миллиону тонн магния!

Как видите, Нептун может быть спокоен за свои богатства.

Сколько на земле никеля?

В земной коре содержится приблизительно 1015 тонн никеля. Много ли это? Хватит ли такого количества никеля, чтобы, допустим, никелировать всю нашу планету (включая поверхность Мирового океана)?

Несложный расчет показывает, что не только хватит, но еще и останется примерно на... 20 тысяч таких же "шариков".

Литые "цари"

Кому не известны шедевры литейного искусства, находящиеся на территории московского Кремля: "царь-колокол" и "царь-пушка". А вот о других литых "царях" знают, должно быть, немногие.

Более тысячи лет назад в Китае был отлит чугунный "царь-лев" высотой около шести метров и весом почти 100 тонн. Между ног этого громадного изваяния могла проехать телега с лошадьми.

Одним из наиболее древних "предков" московского "царь-колокола" считается корейский 48-тонный колокол, отлитый еще в 770 году. Звук его необычайно красив. По преданию, дочь мастера, чтобы избавить отца от многочисленных неудач при выплавке металла, бросилась в расплавленный металл, и в нем застыл ее предсмертный крик.

В музее истории народов Узбекистана недавно появился новый экспонат - огромный чугунный котел, обнаруженный при раскопках кургана вблизи Ташкента. Диаметр этого котла, отлитого древними умельцами, около полутора метров, вес - полтонны. Видимо, "царь-котел" обслуживал в давние времена целое войско: из него можно было накормить сразу почти пять тысяч человек.

Уникальная отливка массой 600 тонн - чугунный шабот (основание) для самого мощного в то время молота - изготовлена в России в 1875 году. Чтобы отлить этот шабот-гигант на Мотовилихинском заводе в Перми построили огромный литейный цех. Двадцать вагранок в течение 120 часов непрерывно плавили металл. Три месяца остывал шабот, затем был вынут из формы и с помощью только одних рычагов и блоков передвинут к месту расположения молота.

Стальному мосту - 200 лет

В Англии есть город Айрон-бридж, что в переводе на русский означает "Стальной мост". Своим названием город обязан стальному мосту через реку Северн, который был сооружен двести лет назад. Этот мост - первенец сталелитейной промышленности не только Англии, но и всего мира. В Айронбридже есть и другие достопримечательности британской промышленности прошлого. В специализированном музее собрано немало экспонатов по истории техники, демонстрирующих успехи английской металлургии XVIII и XIX веков.

Задолго до питекантропов?

Согласно современным представлениям, человек познакомился с металлами (медью, золотом, железом) всего несколько тысячелетий назад. А прежде на нашей планете в течение почти двух миллионов лет в качестве основного материала для изготовления орудий труда и оружия безраздельно господствовал камень.

Однако историки сталкиваются иногда с упоминанием об удивительных фактах, которые (если только они достоверны!) говорят о том, что у нашей цивилизации, возможно, были предшественницы, достигшие высокого уровня материальной культуры.

В литературе, например, встречается сообщение, что якобы в XVI веке испанцы, ступившие на земли Южной Америки, нашли в серебряных рудниках Перу железный гвоздь длиной около 20 сантиметров. Эта находка вряд ли вызвала бы интерес, если бы не одно обстоятельство: большая часть гвоздя была плотно зацементирована в куске каменной породы, а это могло означать, что он пролежал в недрах земли много десятков тысячелетий. Одно время необычный гвоздь будто бы хранился в кабинете вице-короля Перу Франциско де Толедо, который обычно показывал его своим гостям.

Необычный гвоздь
Необычный гвоздь

Известны упоминания и о других подобных находках. Так, в Австралии в угольных пластах, относящихся к третичному периоду, был обнаружен железный метеорит со следами обработки. Но кто обрабатывал его в третичном периоде, удаленном от нашего времени на десятки миллионов лет? Ведь даже такие древние ископаемые предки человека, как питекантропы, жили гораздо позже - всего каких-нибудь 500 тысяч лет назад.

О металлическом предмете, найденном в толще каменного угля в шахтах Шотландии, писал журнал "Сообщения Шотландского общества древней истории". Еще одна подобная находка также имеет "шахтерское" происхождение: речь идет о золотой цепочке, обнаруженной якобы в 1891 году в каменноугольных пластах. "Замуровать" ее в кусок угля способна только сама природа, а произойти это могло в те далекие времена, когда шло образование каменного угля.

Где они, эти предметы - гвоздь, метеорит, цепочка? Ведь современные методы анализа материалов позволили бы хоть в какой-то степени пролить свет на их природу и возраст, а значит, раскрыть их тайну.

К сожалению, этого сегодня никто не знает. Да и были ли они на самом деле?

Сплав для эталонов

14 июля 1789 года восставший народ Франции штурмом взял Бастилию - началась Великая французская революция. Наряду со многими декретами и постановлениями, носившими политический, социальный, экономический характер, революционное правительство приняло решение ввести четкую метрическую систему мер. По предложению комиссии, в которую вошли авторитетные ученые, в качестве единицы длины - метра - была принята одна десятимиллионная часть четверти длины парижского географического меридиана. В течение пяти лет крупнейшие французские специалисты в области астрономии и геодезии скрупулезно измеряли дугу меридиана от Дюнкерка до Барселоны. В 1797 году расчеты были завершены, а спустя два года был изготовлен первый эталон метра - платиновая линейка, получившая название "метр архива", или "архивный метр". За единицу массы - килограмм - приняли массу одного кубического дециметра воды (при 4°С), взятой из Сены. Эталоном килограмма стала платиновая цилиндрическая гиря.

Архивный метр
Архивный метр

С годами, однако, выяснилось, что естественные прототипы этих эталонов - парижский меридиан и воды из Сены - не очень удобны для воспроизведения, да и к тому же они не отличаются примерным постоянством. Такие "грехи" ученые-метрологи сочли непростительными. В 1872 году Международная метрическая комиссия решила отказаться от услуг природного прототипа длины: эту почетную роль доверили "архивному метру", по которому изготовили 31 эталон в виде брусков, но уже не из чистой платины, а из сплава ее с иридием (10%). Через 17 лет аналогичная участь постигла и воду из Сены: прототипом килограмма была утверждена гиря, выполненная из того же платиноиридиевого сплава, а международными эталонами стали 40 ее точных копий.

За прошедшее столетие "в царстве мер и весов" произошли некоторые изменения: вынужден был уйти в отставку "архивный метр" (эталоном метра стала длина, равная 1650763,73 длины волны оранжевого излучения изотопа криптона 86Kr). Но "самый главный в мире" килограмм из сплава платины с иридием по-прежнему остается в строю.

Индий "пробивает" туман

Редкий металл индий сыграл немаловажную роль в... защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. Благодаря чрезвычайно высокой отражательной способности индия изготовленные из него зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко "пробивать" мощными лучами плотный туман, частенько окутывающий британские острова. Поскольку индий принадлежит к легкоплавким металлам, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворением подсчитывая число сбитых вражеских самолетов.

Сорок лет спустя

Весной 1942 года из Мурманска в сопровождении конвоя вышел английский крейсер "Эдинбург", на борту которого находилось более пяти тонн золота - плата СССР союзникам за военные поставки.

Однако в порт назначения крейсер не пришел: он был атакован фашистскими подводными лодками и миноносцами, которые нанесли ему серьезные повреждения. И хотя крейсер еще мог оставаться на плаву, командование английского конвоя приняло решение потопить судно, чтобы ценнейший груз не достался врагу.

Спустя несколько лет после окончания войны родилась идея - извлечь золото из чрева затонувшего корабля. Но понадобилось еще не одно десятилетие, прежде чем идея воплотилась в жизнь.

В апреле 1981 года было достигнуто соглашение между СССР и Великобританией о подъеме золотого груза и уже вскоре английская фирма, с которой был заключен соответствующий контракт, приступила к работе. К месту гибели "Эдинбурга" прибыло специально оборудованное спасательное судно "Стефанитурм".

Для борьбы с морской стихией фирма привлекла опытных и отважных водолазов разных стран. Трудности заключались не только в том, что золото покоилось под 260-метровой толщей воды и слоем ила, но и в том, что рядом с ним находился отсек с боеприпасами, готовыми в любой момент взорваться.

Шли дни. Сменяя друг друга, водолазы шаг за шагом расчищали путь к золотым слиткам, и, наконец, поздно вечером 16 сентября водолаз из Зимбабве Джон Розе поднял на поверхность тяжелую черную болванку.

Когда его коллеги оттерли бензином грязь и мазут, покрывавшие поверхность металла, все увидели долгожданный желтый блеск золота. Лиха беда - начало! Подъем продолжался 20 дней, пока разбушевавшееся Баренцево море не заставило водолазов прекратить работу. Всего из пучины удалось извлечь 431 слиток золота высшей пробы (9999) весом почти по 12 килограмм. Каждый из них по современному курсу оценивается в 100 тысяч фунтов стерлингов. Но 34 слитка еще остались на дне ждать своего часа.

Все поднятое с "Эдинбурга" золото было доставлено в Мурманск. Здесь его тщательно взвесили, "оприходовали" и затем поделили в соответствии с соглашением: часть была передана в качестве вознаграждения фирме "добытчице", а остальное золото разделили между советской и британской сторонами в соотношении два к одному.

Сокровища в пучине

В конце второй мировой войны в Восточно-Китайском море американская подводная лодка потопила японское судно "Ава мару". Это судно, замаскированное под плавучий госпиталь, на самом деле выполняло ответственную миссию по перевозке ценностей, награбленных в странах Восточной и Юго-Восточной Азии. На его борту, в частности, находилось 12 тонн платины, большое количество золота, в том числе 16 тонн антикварных золотых монет, 150 тысяч каратов необработанных алмазов, около 5 тысяч тонн редких металлов.

Сокровища в пучине
Сокровища в пучине

Ушедшие в пучину богатства вот уже почти четыре десятилетия не дают покоя многим искателям сокровищ. При поддержке японского правительства недавно была организована экспедиция, которая должна поднять судно, "начиненное" драгоценными металлами. Однако задача осложняется тем, что местонахождение "Ава мару" до сих пор не установлено. Правда, в печати проскальзывают сообщения о том, что японцев опередили китайцы, которые, якобы, обнаружили судно и уже приступили к "очистке" морского дна.

По подсчетам автора известной за рубежом книги "600 миллиардов под водой" Г. Ризберга, именно на эту сумму океан "позаимствовал" у человека золота, серебра, олова и других металлов.

Нефтяная "руда"

На северо-восточном побережье Каспийского моря есть полуостров Бузачи. Надавно здесь началась промышленная добыча нефти. Само по себе это событие не вызвало бы большого резонанса, если бы не оказалось, что бузачинская нефть характеризуется высоким содержанием ванадия.

Сейчас ученые Института химии, нефти и природных солей, а также Института металлургии и обогащения АН Казахской ССР разрабатывают эффективную технологию извлечения ценного металла из нефтяной "руды".

Ванадий из асцидий

Некоторые морские растения и животные - голотурии, асцидий, морские ежи - "коллекционируют" ванадий, извлекая его из воды каким-то неведомым человеку способом. Одни ученые полагают, что ванадий, присутствующий в живых организмах этой группы, выполняет те же функции, что железо в крови человека и высших животных, т. е. помогает впитывать кислород, или, образно говоря, "дышать". Другие ученые считают, что ванадий необходим обитателям морского дна не для дыхания, а для питания. Кто из этих ученых прав, покажут дальнейшие исследования. Пока же удалось установить, что в крови голотурий содержится до 10% ванадия, а у отдельных разновидностей асцидий концентрация этого элемента в крови в миллиарды раз превышает содержание его в морской воде. Настоящие "копилки" ванадия!

Ученые заинтересовались возможностью извлекать ванадий из этих "копилок". В Японии, например, целые километры морских берегов занимают плантации асцидий. Эти животные очень плодовиты: с одного квадратного метра голубых плантаций снимают до 150 килограммов асцидий. После сбора урожая живую ванадиевую "руду" отправляют в специальные лаборатории, где из нее получают нужный промышленности металл. В печати было сообщение о том, что японские металлурги уже выплавили сталь, которая легирована ванадием, "добытым" из асцидий.

Ванадий из асцидий
Ванадий из асцидий

Огурцы, "фаршированные" железом

Биологи все чаще обнаруживают, что в живых организмах могут протекать такие процессы, для которых обычно требуются высокие температуры или давления. Так, недавно внимание ученых обратили на себя морские огурцы - представители древнего рода, существующего уже 50 миллионов лет. Оказалось, что в студенистом теле этих животных длиной до 20 сантиметров, обитающих обычно в иле на дне морей и океанов, прямо под кожей накапливается обыкновенное железо в виде крохотных шариков (диаметром не более 0,002 миллиметра). До сих пор неясно, как морским огурцам удается "добывать" это железо и для чего им нужна такая "начинка". Серия экспериментов с изотопами железа, возможно, даст ответ на эти вопросы.

"Усы" входят в моду

С тех пор как каменный век сдал свои полномочия эпохе меди и главенствующее положение среди материалов, используемых человеком, занял металл, люди постоянно искали пути повышения его прочности. В середине XX века перед учеными встали проблемы освоения космических пространств, покорения океанских глубин, овладения энергией атомного ядра, и для успешного решения их понадобились новые конструкционные материалы, в том числе сверхпрочные металлы.

Незадолго до этого физики расчетным путем определили максимально возможную прочность веществ: она оказалась в десятки раз больше реально достигнутой. Каким же образом можно приблизить прочностные характеристики металлов к теоретическим пределам?

Ответ, как часто случалось в истории науки, пришел совсем неожиданно. Еще во время второй мировой войны было зафиксировано немало случаев выхода из строя различных электронных устройств, конденсаторов, морских телефонных кабелей. Вскоре удалось установить причину аварий: виновниками их были мельчайшие (диаметром один-два микрона) кристаллики олова или кадмия в форме иголок и волокон, которые вырастали иногда на поверхности стальных деталей, покрытых слоем этих металлов. Чтобы успешно бороться с нитевидными кристаллами, или "усами" (как назвали вредную металлическую "растительность"), нужно было их тщательно изучить. В лабораториях различных стран были выращены нитевидные кристаллы сотен металлов и соединений. Они стали объектом многочисленных исследований, в результате которых выяснилось (поистине, нет худа без добра), что "усы" обладают колоссальной прочностью, близкой к теоретической. Удивительная прочность нитевидных кристаллов объясняется совершенством их структуры, которая, в свою очередь, обусловлена их миниатюрными размерами. Чем меньше кристалл, тем менее вероятно присутствие в нем различных дефектов - внутренних и внешних. Так, если поверхность обычных металлов, даже отполированная, при сильном увеличении напоминает хорошо вспаханное поле, то поверхность нитевидных кристаллов при тех же условиях выглядит практически ровной (у некоторых из них не обнаружена шероховатость даже при увеличении в 40000 раз).

С точки зрения конструктора, вполне уместно сравнение "усов" с обыкновенной паутиной, которую по отношению прочности к массе или длине можно считать "рекордсменом" среди всех природных и синтетических материалов.

Свинец и вечные снега

В последние время внимание ученых приковано к проблемам защиты окружающей среды от промышленных? загрязнений. Многочисленные исследования свидетельствуют о том, что не только в индустриальных районах, но и вдали от них атмосфера, почва, деревья содержат во много раз больше таких токсичных элементов, как свинец и ртуть.

Свинец и вечные снега
Свинец и вечные снега

Любопытны данные, полученные при анализе гренландского фирна (плотного снега). Пробы фирна брались из разных горизонтов, соответствующих тому или иному историческому периоду. В образцах, датированных 800 годом до н. э., на каждый килограмм фирна приходится не более 0,0000004 миллиграмма свинца (эта цифра принята за уровень естественного загрязнения, главный источник которого - вулканические извержения). Образцы, относящиеся к середине XVIII века (начало промышленной революции), содержали его уже в 25 раз больше. В дальнейшем же началось настоящее "нашествие" свинца на Гренландию: содержание этого элемента в пробах, взятых с верхних горизонтов, т. е. соответствующих нашему времени, в 500 раз превосходит естественный уровень.

Еще богаче свинцом вечные снега европейских горных массивов. Так, содержание его в фирне одного из ледников Высоких Татр за последние 100 лет возросло примерно в 15 раз. К сожалению, более ранние образцы фирна не были подвергнуты анализу. Если же исходить из уровня естественной концентрации, то оказывается, что в Высоких Татрах, находящихся рядом с промышленными районами, этот уровень превышен почти в 200 тысяч раз!

Дубы и свинец

Сравнительно недавно объектом исследования шведских ученых стали многовековые дубы, растущие в одном из парков в центре Стокгольма. Оказалось, что содержание свинца в деревьях, возраст которых достигает 400 лет, в последние десятилетия резко увеличилось вместе с ростом интенсивности автомобильного движения. Так, если в прошлом веке в древесине дубов содержалось всего 0,000001% свинца, то к середине XX века свинцовый "запас" удвоился, а к концу 70-х годов возрос уже примерно в 10 раз. Особенно богата этим элементом та сторона деревьев, которая обращена к автомобильным дорогам и, следовательно, более подвержена воздействию выхлопных газов.

Повезло ли Рейну?

Кое в чем Рейну повезло: он оказался единственной на нашей планете рекой, в честь которой назван химический элемент - рений. Но зато другие химические элементы доставляют этой реке немало бед. Недавно в Дюссельдорфе состоялся международный семинар, или "консилиум по Рейну", как назвала его западная печать. Участники консилиума поставили единодушный диагноз: "Река находится при смерти".

Дело в том, что берега Рейна густо "заселены" заводами и фабриками, в том числе химическими, которые щедро снабжают реку своими сточными водами. Неплохо помогают им в этом многочисленные канализационные "притоки". По данным западногерманских ученых, каждый час в рейнские воды поступает 1250 тонн различных солей - целый железнодорожный состав! Ежегодно река "обогащается" 3150 тоннами хрома, 1520 тоннами меди, 12300 тоннами цинка, 70 тоннами окиси серебра и сотнями тонн других примесей. Стоит ли удивляться, что Рейн часто называют теперь "сточной канавой" и даже "ночным горшком индустриальной Европы".

Сточными воды
Сточными воды

А еще говорят, что Рейну повезло...

Круговорот металлов

Исследования американских физиков показали, что даже в таких районах, где нет промышленных предприятий и оживленного автомобильного движения, а следовательно, источников загрязнения атмосферы, в ней присутствуют микроскопические количества тяжелых цветных металлов. Откуда же они берутся?

Ученые полагают, что подземный рудный пласт Земли, содержащий эти металлы, постепенно испаряется. Известно, что некоторые вещества в определенных условиях могут превращаться в пар прямо из твердого состояния, минуя жидкое. Хотя процесс протекает чрезвычайно медленно и в очень малых масштабах, какому-то количеству "беглых" атомов все же удается достичь атмосферы. Однако задержаться здесь им не суждено: дожди и снега постоянно очищают воздух, возвращая испарившиеся металлы в покинутую ими землю.

Алюминий сменит бронзу

С древних времен медь и бронза пришлись по душе ваятелям и чеканщикам. Уже в V веке до н. э. люди научились отливать бронзовые статуи. Некоторые из них отличались гигантскими размерами. В начале III века до н. э. был создан, например, Колосс Родосский - достопримечательность древнего порта Родоса на побережье Эгейского моря. Статуя бога Солнца Гелиоса, на 32 метра возвышавшаяся у входа во внутреннюю гавань порта, считалась одним из семи чудес света.

К сожалению, грандиозное творение древнего скульптора Хароса просуществовало лишь немногим более полувека: во время землетрясения статуя разрушилась и была затем продана сирийцам как металлолом.

Поговаривают, будто бы власти острова Родос, чтобы привлечь побольше туристов, намерены по сохранившимся чертежам и описаниям восстановить в своей гавани это чудо света. Правда, воскресший Колосс Родосский будет выполнен уже не из бронзы, а из алюминия. По проекту внутри головы возрожденного чуда света намечено разместить... пивной бар.

"Кипяченая" руда

Не так давно французские ученые, проводя подводные исследования в Красном море, обнаружили недалеко от берегов Судана своеобразную яму глубиной более 2000 метров, причем вода на этой глубине оказалась очень горячей.

Исследователи опустились в провал на батискафе "Сиана", однако вскоре им пришлось возвратиться, поскольку стальные стенки батискафа быстро нагрелись до 43°С. Пробы воды, взятые учеными, показали, что яма заполнена... горячей жидкой "рудой": содержание в воде хрома, железа, золота, марганца и многих других металлов оказалось необычайно высоким.

Отчего "потела" гора

С давних пор жители Тувы заметили, что на каменных откосах одной из гор время от времени выступали капельки блестящей жидкости. Не случайно гору назвали Терлиг-Хая, что в переводе с тувинского означает "потная скала". Как установили геологи, "виновата" в этом ртуть, которая содержится в горных породах, слагающих Терлиг-Хая. Теперь у подножья горы работники комбината "Тувакобальт" ведут разведку и добычу "серебряной воды".

Находка на Камчатке

На Камчатке есть озеро Ушки. Несколько десятилетий назад на его берегу были найдены четыре металлических кружка - древние монеты. Две монеты плохо сохранились, и ученые-нумизматы ленинградского Эрмитажа смогли лишь установить их восточное происхождение. Зато два других медных кружка рассказали специалистам многое. Они были отчеканены в древнегреческом городе Пантикапее, стоявшем на берегу пролива, который назывался Боспором Киммерийским (в районе теперешней Керчи).

Любопытно, что одну из этих монет можно с полным основанием считать современницей Архимеда и Ганнибала: ученые датировали ее III веком до нашей эры. Вторая монета оказалась "помоложе" - она изготовлена в 17 году нашей эры, когда Пантикапей стал столицей Боспорского царства. На ее лицевой стороне отчеканено изображение царя Рискупорида Первого, а на оборотной - профиль римского императора, вероятнее всего Тиберия, правившего в 14-37 годах нашей эры. Совместное "проживание" на монете сразу двух царственных особ объяснялось тем, что боспорские цари носили титул "Друг цезарей и друг римлян", и поэтому на своих деньгах помещали изображения римских императоров.

Когда и какими путями добрались маленькие медные странницы от берегов Черного моря до глубинки Камчатского полуострова? Но древние монеты хранят молчание.

Грабеж не удался

Успенский собор - красивейшее сооружение Московского Кремля. Интерьер собора освещают несколько люстр, самая большая из которых изготовлена из чистого серебра. Во время войны 1812 года этот драгоценный металл был награблен наполеоновскими солдатами, но "по техническим причинам" вывезти его из России не удалось. Серебро отбили у врага, и в память о победе русские мастера изготовили эту уникальную люстру, состоящую из нескольких сот деталей, украшенных разнообразным орнаментом.

"Как все это музыкально!"

Во время путешествия на яхте по рекам Европы летом 1905 года великий французский композитор Морис Равель посетил крупный завод, расположенный на берегу Рейна. Увиденное там буквально потрясло композитора. В одном из своих писем он рассказывает: "То, что я видел вчера, врезалось мне в память и сохранится навсегда... Это гигантский литейный завод, на котором круглые сутки работает 24000 человек... Как передать Вам впечатление от этого царства металла, этих пылающих храмов огня, от этой чудесной симфонии свистков, шума приводных ремней, грохота молотов, которые обрушиваются на вас со всех сторон... Как все это музыкально! Непременно использую!..." Свой замысел композитор воплотил в жизнь лишь спустя почти четверть века. В 1928 году он написал музыку для небольшого балета "Болеро", ставшего самым значительным произведением Равеля. В музыке явственно слышатся индустриальные ритмы - более четырех тысяч ударов барабана за 17 минут звучания. Поистине симфония металла!

Как все этомузыкально
Как все этомузыкально

Как пояснял автор балета, действие развивается под открытым небом, а декорации обязательно должны включать "корпус завода с тем, чтобы рабочие и работницы, выходящие из цехов, постепенно вовлекались в общий танец".

Титан для Акрополя

Если бы древним грекам был известен металл титан, то вполне вероятно, что они использовали бы его в качестве строительного материала при сооружении зданий знаменитого афинского Акрополя. Но, к сожалению, зодчие древности не располагали этим "вечным металлом". Их замечательные творения оказались подвержены губительному воздействию столетий. Время безжалостно разрушало памятники Эллинской культуры.

В начале нашего века заметно состарившийся афинский Акрополь реконструировали: отдельные элементы зданий были скреплены стальной арматурой. Но прошли десятилетия, сталь кое-где оказалась съедена ржавчиной, многие мраморные плиты осели и потрескались. Чтобы приостановить разрушение Акрополя, решено было заменить стальные крепления титановыми, которым коррозия не страшна, поскольку титан на воздухе практически не окисляется. Для этого Греция недавно закупила в Японии крупную партию "вечного металла".

Кто-то теряет, а кто-то находит

Вряд ли найдется хоть один человек, который за свою жизнь ничего не потерял. По данным британского казначейства, англичане ежегодно теряют одних только золотых и серебряных украшений на два миллиона фунтов стерлингов, да примерно 150 миллионов монет общей стоимостью почти три миллиона фунтов стерлингов. Раз так много теряется, значит, можно много и найти. Вот почему в последнее время на британских островах появилось немало "искателей счастья". На помощь им пришла современная техника: в продажу поступили специальные устройства типа миноискателя, предназначенные для поиска мелких металлических предметов в густой траве, в зарослях кустарника и даже под слоем грунта. За право "прощупать почву" Министерство внутренних дел Англии взимает с каждого желающего (а таковых в стране около 100 тысяч) налог в размере 1,2 фунта стерлингов. Кое-кому удалось, видимо, оправдать эти расходы; несколько раз в печати появлялись сообщения о том, что найдены древние золотые монеты, стоимость которых на нумизматическом рынке весьма велика.

Кто-то теряет, а кто-то находит
Кто-то теряет, а кто-то находит

Волосы и мысли

В последние годы вошли в моду всевозможные тесты для определения интеллектуальных способностей человека. Однако, как полагает некий американский профессор, можно вполне обойтись без тестов, заменив их анализом волос обследуемого индивидуума. Проанализировав более 800 разномастных локонов и прядей, ученый выявил четкую, по его мнению, взаимосвязь между умственным развитием и химическим составом волос. В частности, он утверждает, что в волосах мыслящих людей содержится больше цинка и меди, чем в растительности на головах их умственно отсталых собратьев.

Заслуживает ли внимание эта гипотеза? Видимо, утвердительный ответ можно будет дать лишь в том случае, если содержание указанных элементов в шевелюре автора гипотезы окажется на достаточно высоком уровне.

Сахар с молибденом

Как известно, многие химические элементы необходимы для нормального функционирования живых и растительных организмов. Обычно микроэлементы (их называют так, поскольку требуются они в микродозах) поступают в организм с овощами, фруктами и другой пищей. Недавно Киевская кондитерская фабрика начала выпускать необычный вид сладкой продукции - сахар, в который добавлены нужные человеку микроэлементы. Новый сахар содержит марганец, медь, кобальт, хром, ванадий, титан, цинк, алюминий, литий, молибден, разумеется, в микроскопических количествах.

Вы еще не пробовали сахар с молибденом?

Драгоценная бронза

Как известно, бронза никогда не считалась драгоценным металлом. Однако фирма "Паркер" намеревается изготовить из этого широко распространенного сплава перья небольшой партии сувенирных авторучек (всего пять тысяч штук), которые будут продаваться по баснословной цене - 100 фунтов стерлингов. Какие же основания у руководителей фирмы надеяться на успешную реализацию столь дорогих сувениров?

Драгоценная бронза
Драгоценная бронза

Дело в том, что материалом для перьев послужит бронза, из которой были сделаны части корабельной оснастки знаменитого английского трансатлантического суперлайнера "Куин Элизабет", построенного в 1940 году. Летом 1944 года "Куин Элизабет", ставшая в годы войны транспортным судном, установила своеобразный рекорд, переправив через океан за один рейс 15200 военнослужащих - самое большое количество людей за всю историю мореплавания. Судьба не была благосклонной к этому крупнейшему в истории мирового флота пассажирскому судну. Бурное развитие авиации после второй мировой войны привело к тому, что в 60-х годах "Куин Элизабет" осталась практически без пассажиров: большинство отдало предпочтение стремительному полету над Атлантическим океаном. Роскошный лайнер стал приносить убытки и был продан в США, где его предполагали поставить на прикол, оборудовав на нем фешенебельные рестораны, экзотические бары, игорные залы. Но из этой затеи ничего не вышло, и "Куин Элизабет", проданная с аукциона, оказалась в Гонконге. Здесь были дописаны последние печальные страницы биографии уникального судна-гиганта. В 1972 году на нем возник пожар, и гордость английских судостроителей превратилась в груду металлолома.

Тогда-то у фирмы "Паркер" и родилась заманчивая идея.

Необычная медаль

Громадные участки океанского дна покрыты железомарганцевыми конкрециями. Как полагают специалисты, не за горами уже то время, когда начнется промышленная добыча подводных руд. Пока же ведутся эксперименты по разработке технологии получения железа и марганца из конкреций. Уже есть и первые результаты. Ряду ученых, внесших весомый вклад в освоение мирового океана, была вручена необычная памятная медаль: материалом для нее послужило железо, выплавленное из железомарганцевых конкреций, которые были подняты с океанского дна на глубине около пяти километров.

Топонимика помогает геологам

Топонимика (от греческих слов "топос" - место, местность, и "онома" - имя) - наука о происхождении и развитии географических названий. Часто местность получала имя благодаря каким-то характерным для нее признакам. Вот почему незадолго до войны геологи заинтересовались названиями некоторых участков одного из Кавказских хребтов: Маднеули, Поладеури и Саркинети. Ведь по-грузински "мадани" означает руда, "полади" - сталь, "ркина" - железо. И действительно, геологическая разведка подтвердила наличие в недрах этих мест железных руд, а вскоре в результате раскопок были обнаружены и древние штольни.

...Быть может, когда-нибудь в пятом или десятом тысячелетии, ученые обратят внимание на название древнего города Магнитогорска. Засучат геологи и археологи рукава, и закипит работа там, где когда-то кипела сталь.

"Компас бактерий"

В наши дни, когда пытливый взгляд ученых все дальше проникает в глубины Вселенной, не ослабевает интерес науки и к микромиру, полному тайн и любопытных фактов. Несколько лет назад, например, одному из сотрудников Вудсхолского океанографического института (США, штат Массачусетс) удалось обнаружить бактерии, способные ориентироваться в магнитном поле Земли и перемещаться строго в северном направлении. Как выяснилось, у этих микроорганизмов имеются две цепочки из кристаллического железа, которые, видимо, играют роль своеобразного "компаса". Дальнейшие исследования должны показать, для каких "путешествий" природа снабдила бактерии этим "компасом".

Медный стол

Один из наиболее интересных экспонатов Нижнетагильского краеведческого музея - массивный стол-памятник, изготовленный целиком из меди. Чем же он примечателен? Ответ на этот вопрос дает надпись на крышке стола: "Сия первая в России медь, отысканная в Сибири бывшим комиссаром Никитой Демидовым по грамотам Петра I в 1702, 1705 и 1709 годах, а из сей первоначальной меди сделан оный стол в 1715 году". Весит стол около 420 килограммов.

Чугунные экспонаты

Каких только коллекций не знает мир! Почтовые марки и открытки, старинные монеты и часы, зажигалки и кактусы, спичечные и винные этикетки - этим сегодня уже никого не удивишь. А вот у З. Романова - мастера литейного цеха из болгарского города Видин - конкурентов найдется немного. Он собирает фигурки из чугуна, но не художественные изделия, как, например, знаменитое каслинское литье, а те "произведения искусства", автором которых является... расплавленный чугун. Во время разливки брызги металла, застывая, обретают порой причудливые формы. В коллекции литейщика, которую он назвал "Шутки чугуна", есть фигурки животных и людей, сказочные цветы и многие другие любопытные предметы, которые создал чугун и подметил острый взгляд коллекционера.

Несколько более громоздки и, пожалуй, менее эстетичны экспонаты из коллекции одного из жителей США: он собирает чугунные крышки от канализационных колодцев. Как говорится, "чем бы дитя не тешилось..." Однако супруга счастливого владельца многочисленных крышек, видимо, рассуждала иначе: когда в доме уже не оставалось свободного места, она поняла, что семейному очагу пришла крышка, и подала на развод.

Чугунные крышки от канализационных колодцев
Чугунные крышки от канализационных колодцев

Почем нынче серебро?

Монеты из серебра впервые были отчеканены в Древнем Риме еще в III веке до нашей эры. Более двух тысячелетий серебро прекрасно справлялось с одной из своих функций - служить деньгами. И сегодня серебряные монеты имеют хождение во многих странах. Но вот беда: инфляция и рост цен на благородные металлы, в том числе на серебро, на мировом рынке привели к тому, что между покупательной способностью серебряной монеты и стоимостью заключенного в ней серебра образовался заметный разрыв, который растет с каждым годом. Так, например, стоимость серебра, содержащегося в шведской кроне, выпущенной в период с 1942 по 1967 год, в наши дни фактически оказалась в 17 раз выше официального курса этой монеты.

Таким несоответствием решили воспользоваться некоторые предприимчивые лица. Несложные подсчеты показали, что гораздо выгоднее извлекать серебро из однокроновых монет, чем использовать их по прямому назначению в магазинах. Переплавляя кроны в серебро, дельцы за несколько лет "заработали" около 15 миллионов крон. Они переплавляли бы серебро и дальше, но стокгольмская полиция пресекла их финансово-металлургическую деятельность, и бизнесмены-плавильщики предстали перед судом.

Стальные бриллианты

Долгие годы в отделе оружия Государственного исторического музея экспонировался эфес шпаги, изготовленной тульскими мастерами в конце XVIII столетия и подаренной ими Екатерине II. Разумеется, предназначавшийся в дар императрице эфес был не простым и даже не золотым, а бриллиантовым. Точнее говоря, он был усыпан тысячами стальных бусинок, которым умельцы Тульского оружейного завода с помощью специальной огранки придали вид бриллиантов.

Стальные бриллианты
Стальные бриллианты

Искусство гранения стали возникло, по-видимому, в начале XVIII века. Среди многочисленных подарков, полученных Петром I от туляков, обращала на себя внимание изящная шкатулка-сейф с гранеными стальными шариками на крышке. И хотя граней было немного, металлические "драгоценные камни" играли, притягивали к себе взгляд. С годами на смену алмазной огранке (16-18 граней) приходит бриллиантовая, где число граней может достигать сотни. Но для превращения стали в бриллианты требовалось много времени и труда, поэтому зачастую стальные драгоценности оказывались дороже настоящих. В начале прошлого века секреты этого замечательного искусства постепенно были утеряны. Приложил к этому руку и Александр I, категорически запретивший мастерам-оружейникам заниматься на заводе подобными "безделушками".

Но вернемся к эфесу. Во время ремонта музея эфес был похищен жуликами, которые прельстились множеством бриллиантов: грабителям и в голову не пришло, что эти "камни" сделаны из стали. Когда же "подделка" обнаружилась, раздосадованные похитители, пытаясь замести следы, совершили еще одно преступление: разломали бесценное творение русских умельцев и закопали его в землю.

Все же эфес удалось найти, но коррозия безжалостно расправилась с рукотворными бриллиантами: подавляющее большинство их (около 8,5 тысяч) было покрыто слоем ржавчины, а многие полностью разрушены. Почти все специалисты считали, что восстановить эфес невозможно. Но все же нашелся человек, взявшийся за это труднейшее дело: им стал московский художник-реставратор Е. В. Буторов, на счету которого было уже немало возрожденных шедевров русского и западного искусства.

"Я прекрасно сознавал ответственность и сложность предстоящей работы", - говорит Буторов. - "Все было неясно и неизвестно. Был непонятен принцип сборки рукояти, неизвестна технология изготовления бриллиантовой грани, не было инструментов, необходимых для реставрации. Прежде чем приступить к работе, я долго изучал эпоху создания эфеса, технологию оружейного производства того времени".

Художник вынужден был пробовать различные способы огранки, сочетая реставрационные работы с исследовательским поиском. Работа осложнялась тем, что "бриллианты" заметно различались как по форме (овальные, "маркиз", "фантазийные" и т. д.), так и по размерам (от 0,5 до 5 миллиметров), "простая" огранка (12-16 граней) чередовалась с "королевской" (86 граней).

И вот позади десять лет напряженного ювелирного труда, увенчавшегося большим успехом талантливого реставратора. Родившийся вновь эфес экспонируется в Государственном историческом музее.

Подземный дворец

Одной из красивейших станций Московского метрополитена по праву считается "Маяковская". Удивительной легкостью форм и изяществом линий очаровывает она москвичей и гостей столицы. Но, видимо, немногим известно, что эта парящая ажурность подземного вестибюля достигнута благодаря тому, что при его сооружении впервые в практике отечественного метростроения были применены стальные конструкции, сумевшие воспринять чудовищную нагрузку многометровой толщи грунта.

Строители станции использовали сталь и как отделочный материал. По проекту для облицовки арочных конструкций требовалась гофрированная нержавеющая сталь. Большую помощь метростроевцам оказали специалисты "Дирижаблестроя". Дело в том, что это предприятие располагало новейшей для того времени техникой, в том числе единственным в стране широкополосовым профилировочным станом. На этом предприятии как раз монтировали тогда цельнометаллический складывающийся дирижабль конструкции К. Э. Циолковского. Оболочка этого дирижабля состояла из металлических "скорлуп", соединяемых в подвижной "замок". Для прокатки таких деталей и был сооружен специальный стан.

Почетный заказ метростроевцев "Дирижаблестрой" выполнил в срок; для надежности эта организация направила на станцию метро своих монтажников, которые и глубоко под землей оказались на высоте.

"Памятник" железу

В 1958 году в Брюсселе над территорией Всемирной промышленной выставки величественно возвышалось необычное здание - Атомиум. Девять громадных (диаметром 18 метров) металлических шаров как бы висели в воздухе: восемь - по вершинам куба, девятый - в центре. Это была модель кристаллической решетки железа, увеличенной в 165 миллиардов раз. Атомиум символизировал величие железа - металла-труженика, главного металла промышленности.

Когда выставка закрылась, в шарах Атомиума разместили небольшие рестораны и смотровые площадки, которые ежегодно посещало около полумиллиона человек. Предполагалось, что уникальное здание будет демонтировано в 1979 году. Однако, учитывая хорошее состояние металлоконструкций и немалые доходы, приносимые Атомиумом, его владельцы и власти Брюсселя подписали соглашение, продлевающее жизнь этого "памятника" железу по крайней мере еще на 30 лет, т. е. до 2009 года.

Титановые монументы

18 августа 1964 года в предрассветный час на проспекте Мира в Москве стартовала космическая ракета. Этому звездному кораблю не суждено было достичь Луны или Венеры, однако судьба, уготованная ему, не менее почетна: навеки застыв в московском небе, серебристый обелиск пронесет через столетия память о первом пути, проложенном человеком в космических далях.

Авторы проекта долго не могли выбрать облицовочный материал для этого величественного монумента. Сначала обелиск запроектировали в стекле, потом в пластмассе, затем в нержавеющей стали. Но все эти варианты были забракованы самими авторами. После долгих раздумий и экспериментов архитекторы решили остановиться на отполированных до блеска титановых листах. Из титана была изготовлена и сама ракета, венчавшая обелиск.

Этому "вечному металлу", как часто называют титан, отдали предпочтение и авторы еще одного монументального сооружения. На конкурсе проектов памятников в честь столетия Международного союза электросвязи, организованном ЮНЕСКО, первое место (из 213 представленных проектов) заняла работа советских архитекторов. Монумент, который предполагалось установить на площади Наций в Женеве, должен был представлять собой две бетонные раковины высотой 10,5 метра, облицованные пластинами полированного титана. Человек, проходящий между этими раковинами по специальной дорожке, мог бы услышать свой голос, шаги, ШУМ города, увидеть свое изображение в центре кругов, уходящих в бесконечность. К сожалению, этот интересный проект так и не был осуществлен.

А недавно в Москве был воздвигнут памятник Юрию Гагарину: двенадцатиметровая фигура космонавта № 1 на высокой колонне-постаменте и модель космического корабля "Восток", на котором был совершен исторический полет, выполнены из титана.

Пресс-гигант... колет орехи

Несколько лет назад французская фирма "Интерфорж" объявила о желании приобрести сверхмощный пресс для штамповки сложных крупногабаритных деталей авиационной и космической техники. В своеобразном конкурсе приняли участие ведущие фирмы многих стран. Предпочтение было отдано советскому проекту. Вскоре был заключен договор, и в начале 1975 года при въезде в старинный французский город Иссуар возник огромный производственный корпус, сооруженный для одной машины - уникального по мощности гидравлического пресса усилием 65 тысяч тонн. Контракт предусматривал не просто поставку оборудования, а сдачу пресса "под ключ", т. е. монтаж и пуск силами советских специалистов.

Пресс-гигант... колет орехи
Пресс-гигант... колет орехи

Точно в срок, установленный контрактом, 18 ноября 1976 года, пресс отштамповал первую партию деталей. Французские газеты называли его "машиной века" и приводили любопытные цифры. Масса этого гиганта - 17 тысяч тонн - в два раза превышает массу Эйфелевой башни, а высота цеха, где он установлен, равна высоте собора Парижской богоматери.

Несмотря на огромные размеры, процесс характеризуется большой скоростью штамповки, необычно высокой точностью. Накануне пуска агрегата французское телевидение показывало, как двухтысячетонная траверса пресса аккуратно раскалывает грецкие орехи, не повреждая их сердцевину, или задвигает поставленный "на попа" спичечный коробок, не оставляя при этом на нем ни малейших повреждений.

На церемонии, посвященной передаче пресса, выступил В.Жискар д'Эстен, в то время президент Франции. Заключительные слова своей речи он произнес по-русски: "Спасибо за это отличное достижение, которое делает честь советской промышленности".

Горелка вместо ножниц

Несколько лет назад в Кливленде (США) был создан новый научно-исследовательский институт легких металлов. На церемонии открытия традиционная ленточка, натянутая перед входом в институт, была из... титана. Чтобы ее перерезать, мэр города вместо ножниц вынужден был воспользоваться газовой горелкой и защитными очками.

Железное кольцо

Несколько лет назад в Музее истории и реконструкции Москвы появился новый экспонат - железное кольцо. И хотя это скромное колечко не шло ни в какое сравнение с роскошными перстнями из благородных металлов и драгоценных камней, работники музея отвели ему почетное место в своей экспозиции. Чем же привлекло это колечко их внимание?

Дело в том, что материалом для кольца послужило железо кандалов, которые долго носил в Сибири приговоренный к вечной каторге декабрист Евгений Петрович Оболенский, начальник штаба восстания на Сенатской площади. В 1828 году пришло высочайшее разрешение снять с декабристов кандалы. Отбывавшие наказание на Нерчинских рудниках вместе с Оболенским братья Николай и Михаил Бестужевы изготовили из его оков памятные железные кольца.

Более ста лет после смерти Оболенского хранилось кольцо вместе с другими реликвиями в его семье, переходя из поколения в поколение. И вот в наши дни потомки декабриста передали это необычное железное кольцо в музей.

Кое-что о лезвиях

Уже больше века люди пользуются лезвиями для бритья - тонкими заточенными пластинками из разных металлов. Всезнающая статистика утверждает, что в наши дни в мире ежегодно выпускается около 30 миллиардов лезвий.

Первое время их изготовляли главным образом из углеродистой стали, затем ей на смену пришла "нержавейка". В последние годы режущие кромки лезвий покрывают тончайшим слоем высокомолекулярных полимерных материалов, служащих сухой смазкой в процессе срезания волос, а для повышения стойкости режущих кромок на них иногда наносят атомарные пленки хрома, золота или платины.

"События" на рудниках

В 1974 году в СССР было зарегистрировано открытие, в основе которого лежат сложные биохимические процессы, совершаемые... бактериями. Многолетнее изучение сурьмяных месторождений показало, что сурьма в них постепенно окисляется, хотя при обычных условиях такой процесс не может протекать: для этого нужны высокие температуры - более 300°С. Какие же причины заставляют сурьму нарушать химические законы?

Исследование образцов окисленной руды показало, что они густо заселены неизвестными прежде микроорганизмами, которые и были виновниками окислительных "событий" на рудниках. Но, окислив сурьму, бактерии не успокаивались на достигнутом: энергию окисления они тут же пускали в ход для осуществления другого химического процесса - хемосинтеза, т. е. для превращения углекислоты в органические вещества.

Явление хемосинтеза впервые обнаружено и описано еще в 1887 году русским ученым С. Н. Виноградским. Однако до сих пор науке было известно всего четыре элемента, при бактериальном окислении которых выделяется энергия для хемосинтеза: азот, сера, железо и водород. Теперь к ним прибавилась сурьма.

Медная "одежда" ГУМа

Кто из москвичей или гостей столицы не бывал в Государственном универсальном магазине - ГУМе? Построенное почти сто лет назад здание торговых рядов переживает свою вторую молодость. Специалисты Всесоюзного производственного научно-реставрационного комбината выполнили большие работы по реконструкции ГУМа. В частности, износившаяся за долгие годы крыша из оцинкованного железа заменена современным кровельным материалом - "черепицей" из листовой меди.

Трещины на маске

Долгие годы ученые вели спор по поводу уникального творения древнеегипетских мастеров - золотой маски фараона Тутанхамона. Одни утверждали, что она сделана из целого слитка золота. Другие считали, что ее собрали из отдельных частей. Для установления истины решено было воспользоваться кобальтовой пушкой. С помощью изотопа кобальта, точнее излучаемых им гамма-лучей, удалось установить, что маска действительно состоит из нескольких деталей, но настолько тщательно подогнанных одна к другой, что заметить линии стыка невооруженным глазом было невозможно.

В 1980 году знаменитая коллекция произведений искусства Древнего Египта демонстрировалась в Западном Берлине. В центре внимания, как всегда, находилась знаменитая маска Тутанхамона. Неожиданно в один из дней работы выставки специалисты заметили на маске три глубокие трещины. Вероятно, по каким-то причинам "швы", т. е. линии стыка отдельных частей маски, начали расходиться. Встревоженные не на шутку представители комиссии по делам культуры и туризма АРЕ поспешили вернуть коллекцию в Египет. Теперь слово за экспертизой, которая должна ответить на вопрос, что же стряслось с ценнейшим произведением искусства древности?

Лунный алюминий

Как и на Земле, металлы в чистом виде сравнительно редко встречаются на Луне. Тем не менее уже удалось найти частички таких металлов, как железо, медь, никель, цинк. В пробе лунного грунта, взятой автоматической станцией "Луна-20" в континентальной части нашего спутника - между Морем Кризисов и Морем Изобилия - впервые был обнаружен самородный алюминий. При исследовании лунной фракции массой 33 миллиграмма в Институте геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР были выявлены три крохотные частицы чистого алюминия. Это плоские слегка удлиненные крупицы размером 0,22, 0,15 и 0,1 миллиметра с матовой поверхностью и серебристо-серые в свежем изломе.

Параметры кристаллической решетки самородного лунного алюминия оказались такими же, как у образцов чистого алюминия, полученного в земных лабораториях. В природе же на нашей планете самородный алюминий был найден учеными лишь один-единственный раз в Сибири. По мнению специалистов, на Луне этот металл должен чаще встречаться в чистом виде. Объясняется это тем, что лунный грунт постоянно "обстреливается" потоками протонов и других частиц космического излучения. Такая бомбардировка может привести к нарушению кристаллической решетки и к разрыву связей алюминия с другими химическими элементами в минералах, составляющих лунную породу. В результате "разрыва отношений" и появляются в грунте частицы чистого алюминия.

Корысти ради

Три четверти века назад произошло Цусимское сражение. В этом неравном бою с японской эскадрой морская пучина поглотила несколько русских кораблей и среди них - крейсер "Адмирал Нахимов".

Недавно японская фирма "Ниппон Марин" решила поднять крейсер со дна моря. Разумеется, операция по подъему "Адмирала Нахимова" объясняется не любовью к русской истории и ее реликвиям, а самыми что ни на есть корыстными соображениями: есть сведения, что на борту затонувшего судна находились слитки золота, стоимость которого в нынешних ценах может составить от 1 до 4,5 миллиарда долларов.

Уже удалось определить место, где на глубине около 100 метров лежит крейсер, и фирма готова приступить к его подъему. По расчетам специалистов, эта операция продлится несколько месяцев и обойдется компании примерно в полтора миллиона долларов. Что же, ради миллиардов можно рискнуть миллионами.

Предметы старины глубокой

Изготовленные сотни, а порой и тысячи лет назад изделия из дерева или камня, керамики или металла украшают стенды крупнейших музеев мира, занимают почетное место в многочисленных частных коллекциях. Любители старины готовы платить за произведения древних мастеров баснословные деньги, а некоторые предприимчивые любители денег, в свою очередь, готовы создавать в широком ассортименте и выгодно сбывать "предметы старины глубокой".

Как отличить подлинные раритеты от тонко выполненных подделок? Прежде единственным "прибором" для этой цели служил опытный глаз специалиста. Но, увы, на него не всегда можно положиться. Сегодня наука позволяет довольно точно определять возраст различных изделий из любых материалов.

Пожалуй, основным объектом фальсификации являются золотые украшения, статуэтки, монеты древних народов - этрусков и византийцев, инков и египтян, римлян и греков. Методы установления подлинности предметов из золота базируются на технологическом обследовании и анализе металла. По тем или иным примесям старое золото без труда удается отличить от нового, а методы обработки металла, которым пользовались античные мастера, и характер их творчества настолько оригинальны и неповторимы, что шансы фальсификаторов на успех сводятся к нулю.

Медные и бронзовые подделки эксперты узнают по особенностям поверхности металла, но главным образом по его химическому составу. Поскольку он неоднократно менялся на протяжении столетий, для каждого периода характерно определенное содержание основных компонентов. Так, в 1965 году коллекция берлинского музея Кунстхандель пополнилась ценным экспонатом - бронзовой позднеантичной лейкой в форме коня. Считалось, что эта лейка, или ритон, представляет собой "коптскую работу IX-X веков". Точно такой же бронзовый ритон, подлинность которого не вызывала сомнений, хранится в Эрмитаже. Тщательное сравнение экспонатов навело ученых на мысль о том, что берлинский конь не что иное, как искусно изготовленная подделка. И действительно, анализ подтвердил опасения: бронза содержала 37-38% цинка - многовато для X века. Вероятнее всего, полагают эксперты, этот ритон появился на свет лишь за несколько лег до того, как он попал в Кунстхандель, т. е. примерно в 1960 году - в "час пик" моды на коптские изделия.

В борьбе с подделками

Для определения подлинности древних керамических изделий ученые успешно применяют метод археомагнетизма. В чем же он заключается? При охлаждении керамической массы содержащиеся в ней частицы железа имеют "привычку" выстраиваться вдоль силовых линий магнитного поля Земли. А так как оно со временем меняется, то меняется и характер расположения железных частиц, благодаря чему путем несложных исследований можно определить возраст "подозреваемого" изделия из керамики. Даже если фальсификатору удалось подобрать состав керамической массы, сходный с древними составами, и искусно скопировать форму изделия, то расположить соответствующим образом частицы железа он, разумеется, не в силах. Это-то его и выдаст с головой.

Рост "железной мадам"

Как известно, у металлов довольно высокий коэффициент теплового расширения. По этой причине стальные сооружения в зависимости от времени года, а следовательно, от температуры окружающего воздуха, становятся то длиннее, то короче. Так, знаменитая Эйфелева башня - "железная мадам", как часто называют ее парижане, - летом на 15 сантиметров выше, чем зимой.

"Железный дождь"

Наша планета не очень гостеприимно встречает небесных странников: при входе в плотные слои ее атмосферы крупные метеориты обычно взрываются и падают на земную поверхность в виде так называемых "метеоритных дождей".

Самый обильный такой "дождь" выпал 12 февраля 1947 года над западными отрогами Сихотэ-Алиня. Он сопровождался грохотом взрывов, в радиусе 400 километров был виден болид - яркий огненный шар с огромным светящимся дымным хвостом.

Для изучения столь необычных "атмосферных осадков" в зону падения космического пришельца вскоре прибыла экспедиция Комитета по метеоритам АН СССР. В таежных дебрях ученые нашли 24 кратера диаметром от 9 до 24 метров, а также более 170 воронок и лунок, образованных частицами "железного дождя". Всего экспедиция собрала свыше 3500 железных осколков общей массой 27 тонн. По мнению специалистов, до встречи с Землей этот метеорит, получивший название Сихотэ-Алинского, весил около 70 тонн.

Термиты-геологи

Геологи нередко пользуются "услугами" многих растений, которые служат своеобразными индикаторами определенных химических элементов и благодаря этому помогают обнаружить в почве залежи соответствующих полезных ископаемых. А горный инженер из Зимбабве Уильям Уэст решил привлечь в качестве помощников при геологических поисках представителей не флоры, а фауны, точнее говоря, обыкновенных африканских термитов. При постройке своих конусообразных "общежитий" - термитников (их высота достигает иногда 15 метров) эти насекомые проникают глубоко в землю. Возвращаясь на поверхность, они выносят с собой строительный материал - "пробы" грунта с различной глубины. Вот почему исследование термитников - определение их химического и минерального состава - позволяет судить о наличии в почве данной местности тех или иных полезных ископаемых.

Уэст провел множество экспериментов, которые затем легли в основу его "термитного" метода. Уже получены и первые практические результаты: благодаря методу инженера Уэста открыты богатые золотоносные пласты.

Что подо льдами Антарктиды?

Открытая в 1820 году Антарктида до сих пор остается континентом загадок: ведь практически вся ее территория (кстати почти в полтора раза превышающая площадь Европы) закована в ледовый панцирь. Толщина льда составляет в среднем 1,5 2 километра, а в некоторых местах достигает 4,5 километра.

Заглянуть под эту "скорлупку" непросто, и хоть уже более четверти века ученые ряда стран ведут здесь интенсивные исследования, Антарктида раскрыла далеко не все свои тайны. В частности, ученых интересуют природные ресурсы этого материка. Многие факты говорят о том, что Антарктида имеет общее геологическое прошлое с Южной Америкой, Африкой, Австралией и, следовательно, у этих регионов должны быть примерно сходными спектры полезных ископаемых. Так, антарктические горные породы, по-видимому, содержат алмазы, уран, титан, золото, серебро, олово. Кое-где уже обнаружены пласты каменного угля, залежи железных и медномолибденовых руд. Преградой на пути к ним стоят пока горы льда, но рано или поздно эти богатства поступят в распоряжение людей.

предыдущая главасодержаниеследующая глава

Порошковая покраска - ПроектРесурс ссылка.








© METALLURGU.RU, 2010-2020
При использовании материалов сайта активная ссылка обязательна:
http://metallurgu.ru/ 'Библиотека по металлургии'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь